SHORT COMMUNICATION

AN $E \rightleftharpoons Z$ ISOMERIZATION OF AN ELECTROPHILIC VINYL AZIDE BY ¹⁵N₃. A PROBE FOR INTERNAL ROTATION PROCESSES IN THE CARBANIONIC INTERMEDIATE OF NUCLEOPHILIC VINYLIC SUBSTITUTION

JAROSLAV JONAS* AND CTIBOR MAZAL

Department of Organic Chemistry, Masaryk University, 61137 Brno, Czech Republic

AND

ZVI RAPPOPORT*

Department of Organic Chemistry, The Hebrew University, Jerusalem 91904, Israel

The label incorporation and $Z \rightarrow E$ isomerization in the reaction of 3-azidomethylenedihydro-(3H)-furan-2-one with Na¹⁵NN₂ in 1:1 water-acetone were measured as a probe for internal clockwise vs anticlockwise rotation in the intermediate carbanion.

Nucleophilic isomerization of electrophilic alkenes¹ involves an attack of the nucleophile [Nu⁻] on the alkene to form a carbanion which undergoes internal rotation (k_{rot}) , followed by nucleophile expulsion (k_{el}) . Whether isomerization will be observed when the double bond carries a nucleofuge (LG) depends on the $k_{\rm el}/k_{\rm rot}$ ratio. With good nucleofuges, e.g. Br, and moderately electrophilic alkenes, nucleofuge expulsion after 60° rotation gives only substitution with retention and no isomerization.² With longer lived carbanions, $k_{\rm el}/k_{\rm rot}$ may be low but most nucleophiles are poorer nucleofuges than Cl and Br, and substitution is favored over isomerization. For $Nu \neq LG$, electrophilic vinyl chlorides and bromides isomerize only when $Nu^{\sim} = NCS^{-}.^{3}$

For identical nucleophile and nucleofuge, nucleophilic isomerization, e.g., by Br⁻, ArS⁻ or ArO⁻, was observed in strongly electrophilic systems.⁴ The concurrent isomerization (isom) and incorporation (ex) of a labelled nucleophile allows the calculation of k_{ex}/k_{isom} ratios. In the reaction of (*E*)- and (*Z*)-*p*-O₂NC₆H₄C(Cl)=C(CN)CO₂Me with ³⁶Cl⁻, k_{ex}/k_{isom} = 47-136,⁵ but the percentage incorporation in the isomerized material alone could not be determined.

Vinylic substitution of highly electrophilic alkenes mostly gives E/Z product mixtures. This could be visualized to occur in two ways: (a) competition between 60° (clockwise)⁶ and 120° (anticlockwise)⁶ rotations in the carbanion, each followed by nucleofuge expulsion from a conformation with parallel $sp^{2}(C^{-})$ and C-X orbitals (the terms clockwise and anticlockwise relate to the specific scheme written; they are mechanistically important only when they are compared with one another); or (b) exclusive 60° rotation and nucleofuge expulsion giving retention, and a further 120° rotation (overall 180°) and nucleophile expulsion giving an isomerized product. These routes are usually indistinguishable but they are distinguishable when a labelled nucleophile, $Nu^{-*} = LG$, is used. When $k_{\rm el} \gg k_{\rm rot}$ the 120° rotation gives a labelled isomeric product, whereas 180° rotation gives isomerization without incorporation. Up to now the large k_{ex}/k_{isom} ratios prevented the use of this probe. We have now found a suitable system for applying it.

(Z)-3-azidomethylenedihydro-(3H)-furan-2-one,

Z-1, isomerizes completely in 1:1 water-acetone containing NaN₃ (but not with OH⁻ or AcO⁻ or thermally) to the more stable *E*-isomer *E*-1⁶ [equation (1)]. *E*-1 gives no **Z-1** with NaN₃.

Received 11 April 1994

^{*} Authors to whom correspondence should be addressed.

Dedicated to Professor G. Modena on the occasion of his 70th birthday.

CCC 0894-3230/94/110652-03 © 1994 by John Wiley & Sons, Ltd.

We measured both the extent of isomerization and label incorporation occurring with equimolar amount of Na¹⁵NN₂ (99%; Cambridge Isotope Laboratories, Switzerland) (NaN₃^{-*}). Starting from Z-1 the extent of isomerization to E-1 at room temperature between 2 and 36 days was determined by HPLC or ¹H NMR spectrometry. E-1 and Z-1 were separated by HPLC and the percentage label in each was determined by chemical ionization mass spectrometry from the intensities of the m/z 140 (non-labelled molecular and base peak)/141 (singly labelled) ratio after correction for natural abundance of other isotopes (mass spectra were determined in the Mass Spectrometry Centre at the Technion, Haifa, with a Finnigan TSQ-70B mass spectrometer). A similar experiment was conducted for 3-45 h at 45 °C. There was not enough *E*-1 at the first points to determine the percentage incorporation (Table 1). *E*-1 also reacted with NaN₃^{-*} under the same conditions as in the latter experiment and the extent of N₃^{-*} incorporation is given in the last column in Table 1.

Several features emerge from the data. (a) E-1 exchanges with retention (no Z-1 was formed) at a reasonable rate at 45 °C giving 90% of the expected exchange after 35 h, but the value decreases at 46 h. (b) Starting from Z-1, the percentage label in E-1 exceeds that in Z-1 and at room temperature also exceeds the expected maximum 50% exchange. The statistical value of 50% exchange in E-1 + Z-1 is achieved after long reaction time. (c) N₃^{-*} incorporation into both isomers is faster than the isomerization.

The results are analysed in Scheme 1, where Y is the

Table 1. N_3^* incorporation and $Z \rightarrow E$ isomerization in the reaction of *E*-1 and *Z*-1 with N_3^* in 1:1 water-acetone- d_6^a

Reaction time (h)	Temperature (°C)	Precursor ^b	<i>E</i> -1(%) ^c	Label (%) in			
				<i>Z</i> -1	<i>E</i> -1	<i>E</i> -1 + <i>Z</i> -1	<i>E</i> -1 ^d
3	45	<i>Z</i> -1	2.5	8.3			9.7
5			5	10·6°	39.5	12.1	12.5
6.5			7	12.8	24.5	13.6	20.4
23			28				40.0
35			36				45·0
46			52				34.2
48	r.t. ^f	Z-1	7.7	10.0°			
216			22	23 · 5°	62.3	30.0	
504			38.8	36.3	56.0	44.0	
864			56	41.8	58.4	51 · 1	

^a [E-1] or [Z-1] = $[Na^{15}N_3] = 0.4 \text{ M}$

^b Data in the first seven columns.

^c Determined by HPLC at 45 [°]C and by HPLC and ¹H NMR (average given) at room temperature.

^d Precursor is *E*-1 and data are for reaction times, temperature and the percentage label as before.

^e Average of two experiments.

^fRoom temperature.

--C(O)— substituent of 1. Since azide is a poor nucleofuge (in solvolysis of benzyl derivatives, azide is a ca 10⁹ slower nucleofuge than chloride⁷), 1 is moderately electrophilic and concerted vinylic substitution gives retention,² the reaction proceeds via a carbanionic intermediate. The initially formed conformer I from Z-1 can undergo 60° rotation to II or 120° rotation to III. Loss of N₃ from II and III gives labelled retained Z-1^{*} and isometric labelled E-1^{*}, respectively. Further, 120° rotation in II gives IV, which loses N₃^{-*} to give non-labelled E-1. E-1 incorporates N₃^{-*} by the

$$E-1 \xrightarrow{60} IV \longrightarrow III \longrightarrow E-1^*$$
 route.

The higher percentage labelling starting from E-1 than from Z-1 indicates that incorporation and isomerization are connected, i.e. $E-1^*$ is not entirely formed by exchange of E-1 formed during the substitution.

If I-IV equilibrate rapidly before N_3/N_3^* expulsion, since the transition state for elimination from III/IV has lower energy than that from I/II and $k_{\rm el}(N_3^-)/k_{\rm el}(N_3^-*) \approx 1$, the Curtin-Hammett principle predicts that the E-1 formed should be 50% labelled throughout. If, instead, 60° and 120° rotations are followed by complete N_3/N_3^-* expulsion without further rotation, only E-1* will be formed. If isomerization proceeds by 180° rotation/ N_3^-* expulsion, only E-1 will be obtained. Neither of these predictions is borne out and the non-statistical labelling requires other explanations. Competition between 180° and 120° rotations with $[E-1]/[E-1^*] = k_{\rm rot}^{180}/k_{\rm rot}^{120}$ if $k_{\rm el} \gg k_{\rm rot}$, incomplete equilibration of I-IV or isomerization only via $120^\circ/N_3^-$ expulsion are other alternatives.

We conclude that in spite of the relatively low nucleofugality of azide, N_3^- expulsion precedes the complete equilibration of conformers I–IV. Competition between 60° and 120° rotations is a plausible interpretation if further rotation occurs from conformers II and III. Our conclusion applies only for an exchange process since the hyperconjugative barriers⁸ for 120° and 180° rotations are similar.

Loss of some E-1 or Z-1 by hydrolysis during the reaction and exchange of E-1 with N_3^* prevent accumulation of more quantitative data. However, for a first use of the exchange in both isomers/isomerization probe, even qualitative results are important. A search for systems capable of giving more quantitative data is continuing.

ACKNOWLEDGEMENT

The work in Israel was supported by the United States–Israel Binational Science Foundation (BSF) to which we are indebted.

REFERENCES

- For an old summary, see S. Patai and Z. Rappoport, in *The Chemistry of Alkenes*, edited by S. Patai, Chapt. 8, pp. 469-584. Wiley, Chichester (1964); Z. Rappoport, *Adv. Chem. Ser.* No. 213, 399 (1987).
- Recent reviews: e.g. Z. Rappoport, Acc. Chem. Res. 14, 7 (1981); 25, 474 (1992); Recl. Trav. Chim. Pays-Bas 104, 309 (1985).
- M. S. Korobov, L. E. Nivorozhkin, V. I. Minkin, M. M. Levkovitch and S. I. Testoedova, *Zh. Org. Khim.* 14, 788 (1978) Engl. transl., *J. Org. Chem. (USSR)* 14, 728 (1978); Z. Rappoport, B. Avramovitch, M. Karni and Y. Apeloig, *Isr. J. Chem.* 29, 267 (1989).
- Z. Rappoport and A. Gazit, J. Org. Chem. 50, 3184 (1985), J. Org. Chem. 51, 4112 (1986); J. Am. Chem. Soc. 109, 6698 (1987); Z. Rappoport and B. Avramovitch, J. Org. Chem. 47, 1397 (1982).
- G. Lodder, J. W. J. van Dorp, B. Avramovitch and Z. Rappoport, J. Org. Chem. 54, 2574 (1989).
- C. Mazal, Z. Jurka and J. Jonas, Collect. Czech. Chem. Commun. 49, 2509 (1984); L. Kalouskova, Diploma Thesis, Department of Organic Chemistry, Faculty of Science, Masaryk University, Brno (1988).
- 7. J. P. Richard and T. Amyes, personal communication.
- 8. Y. Apeloig and Z. Rappoport, J. Am. Chem. Soc. 101, 5095 (1979).